11,128 research outputs found

    Pion production within the hybrid relativistic plane wave impulse approximation model at MiniBooNE and MINERvA kinematics

    Get PDF
    The hybrid model for electroweak single-pion production (SPP) off the nucleon, presented in [Gonz\'alez-Jim\'enez et al., Phys. Rev. D 95, 113007 (2017)], is extended here to the case of incoherent pion-production on the nucleus. Combining a low-energy model with a Regge approach, this model provides valid predictions in the entire energy region of interest for current and future accelerator-based neutrino-oscillation experiments. The Relativistic Mean-Field model is used for the description of the bound nucleons while the outgoing hadrons are considered as plane waves. This approach, known as Relativistic Plane-Wave Impulse Approximation (RPWIA), is a first step towards the development of more sophisticated models, it is also a test of our current understanding of the elementary reaction. We focus on the charged-current ν\nu(νˉ\bar\nu)-nucleus interaction at MiniBooNE and MINERvA kinematics. The effect on the cross sections of the final-state interactions, which affect the outgoing hadrons on their way out of the nucleus, is judged by comparing our results with those from the NuWro Monte Carlo event generator. We find that the hybrid-RPWIA predictions largely underestimate the MiniBooNE data. In the case of MINERvA, our results fall below the ν\nu-induced 1π0\pi^0 production data, while a better agreement is found for ν\nu-induced 1π+\pi^+ and νˉ\bar\nu-induced 1π0\pi^0 production.Comment: 13 pages, 10 figure

    Cosmic magnetic fields and dark energy in extended electromagnetism

    Get PDF
    We discuss an extended version of electromagnetism in which the usual gauge fixing term is promoted into a physical contribution that introduces a new scalar state in the theory. This new state can be generated from vacuum quantum fluctuations during an inflationary era and, on super-Hubble scales, gives rise to an effective cosmological constant. The value of such a cosmological constant coincides with the one inferred from observations as long as inflation took place at the electroweak scale. On the other hand, the new state also generates an effective electric charge density on sub-Hubble scales that produces both vorticity and magnetic fields with coherent lengths as large as the present Hubble horizon.Comment: 4 pages, 2 figures. Contribution to the proceedings of Spanish Relativity Meeting 2010, Granada, Spain, 6-10 September 201

    Seagull and pion-in-flight currents in neutrino-induced 1N1N and 2N2N knockout

    Full text link
    [Background] The neutrino-nucleus (νA\nu A) cross section is a major source of systematic uncertainty in neutrino-oscillation studies. A precise νA\nu A scattering model, in which multinucleon effects are incorporated, is pivotal for an accurate interpretation of the data. [Purpose] In νA\nu A interactions, meson-exchange currents (MECs) can induce two-nucleon (2N2N) knockout from the target nucleus, resulting in a two-particle two-hole (2p2h) final state. They also affect single nucleon (1N1N) knockout reactions, yielding a one-particle one-hole (1p1h) final state. Both channels affect the inclusive strength. We present a study of axial and vector, seagull and pion-in-flight currents in muon-neutrino induced 1N1N and 2N2N knockout reactions on 12^{12}C. [Method] Bound and emitted nucleons are described as Hartree-Fock wave functions. For the vector MECs, the standard expressions are used. For the axial current, three parameterizations are considered. The framework developed here allows for a treatment of MECs and short-range correlations (SRCs). [Results] Results are compared with electron-scattering data and with literature. The strengths of the seagull, pion-in-flight and axial currents are studied separately and double differential cross sections including MECs are compared with results including SRCs. A comparison with MiniBooNE and T2K data is presented. [Conclusions] In the 1p1h channel, the effects of the MECs tend to cancel each other, resulting in a small effect on the double differential cross section. 2N2N knockout processes provide a small contribution to the inclusive double differential cross section, ranging from the 2N2N knockout threshold into the dip region. A fair agreement with the MiniBooNE and T2K data is reached.Comment: 16 pages, 10 figure
    • …
    corecore